direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C2×C23.11D14, C24.50D14, C14.6(C23×C4), C23.57(C4×D7), (C2×C14).24C24, C14⋊2(C42⋊C2), (C2×C28).569C23, Dic7⋊C4⋊56C22, C22⋊C4.122D14, (C22×Dic7)⋊10C4, (C4×Dic7)⋊71C22, (C22×C4).311D14, (C23×Dic7).7C2, C22.16(C23×D7), (C23×C14).50C22, Dic7.22(C22×C4), C23.143(C22×D7), C23.D7.82C22, C22.63(D4⋊2D7), (C22×C28).349C22, (C22×C14).386C23, (C2×Dic7).302C23, (C22×Dic7).243C22, C2.8(D7×C22×C4), C7⋊2(C2×C42⋊C2), (C2×C4×Dic7)⋊28C2, C22.23(C2×C4×D7), C14.65(C2×C4○D4), C2.1(C2×D4⋊2D7), (C2×Dic7⋊C4)⋊33C2, (C2×Dic7)⋊21(C2×C4), (C2×C22⋊C4).20D7, (C14×C22⋊C4).25C2, (C2×C14).17(C22×C4), (C22×C14).76(C2×C4), (C2×C4).254(C22×D7), (C2×C23.D7).19C2, (C2×C14).165(C4○D4), (C7×C22⋊C4).132C22, SmallGroup(448,933)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C2×C23.11D14
G = < a,b,c,d,e,f | a2=b2=c2=d2=1, e14=c, f2=dc=cd, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, ebe-1=fbf-1=bd=db, ce=ec, cf=fc, de=ed, df=fd, fef-1=e13 >
Subgroups: 1044 in 330 conjugacy classes, 167 normal (17 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C7, C2×C4, C2×C4, C23, C23, C23, C14, C14, C14, C42, C22⋊C4, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C24, Dic7, Dic7, C28, C2×C14, C2×C14, C2×C14, C2×C42, C2×C22⋊C4, C2×C22⋊C4, C2×C4⋊C4, C42⋊C2, C23×C4, C2×Dic7, C2×Dic7, C2×C28, C2×C28, C22×C14, C22×C14, C22×C14, C2×C42⋊C2, C4×Dic7, Dic7⋊C4, C23.D7, C7×C22⋊C4, C22×Dic7, C22×Dic7, C22×C28, C23×C14, C23.11D14, C2×C4×Dic7, C2×Dic7⋊C4, C2×C23.D7, C14×C22⋊C4, C23×Dic7, C2×C23.11D14
Quotients: C1, C2, C4, C22, C2×C4, C23, D7, C22×C4, C4○D4, C24, D14, C42⋊C2, C23×C4, C2×C4○D4, C4×D7, C22×D7, C2×C42⋊C2, C2×C4×D7, D4⋊2D7, C23×D7, C23.11D14, D7×C22×C4, C2×D4⋊2D7, C2×C23.11D14
(1 148)(2 149)(3 150)(4 151)(5 152)(6 153)(7 154)(8 155)(9 156)(10 157)(11 158)(12 159)(13 160)(14 161)(15 162)(16 163)(17 164)(18 165)(19 166)(20 167)(21 168)(22 141)(23 142)(24 143)(25 144)(26 145)(27 146)(28 147)(29 86)(30 87)(31 88)(32 89)(33 90)(34 91)(35 92)(36 93)(37 94)(38 95)(39 96)(40 97)(41 98)(42 99)(43 100)(44 101)(45 102)(46 103)(47 104)(48 105)(49 106)(50 107)(51 108)(52 109)(53 110)(54 111)(55 112)(56 85)(57 139)(58 140)(59 113)(60 114)(61 115)(62 116)(63 117)(64 118)(65 119)(66 120)(67 121)(68 122)(69 123)(70 124)(71 125)(72 126)(73 127)(74 128)(75 129)(76 130)(77 131)(78 132)(79 133)(80 134)(81 135)(82 136)(83 137)(84 138)(169 224)(170 197)(171 198)(172 199)(173 200)(174 201)(175 202)(176 203)(177 204)(178 205)(179 206)(180 207)(181 208)(182 209)(183 210)(184 211)(185 212)(186 213)(187 214)(188 215)(189 216)(190 217)(191 218)(192 219)(193 220)(194 221)(195 222)(196 223)
(1 65)(2 149)(3 67)(4 151)(5 69)(6 153)(7 71)(8 155)(9 73)(10 157)(11 75)(12 159)(13 77)(14 161)(15 79)(16 163)(17 81)(18 165)(19 83)(20 167)(21 57)(22 141)(23 59)(24 143)(25 61)(26 145)(27 63)(28 147)(29 86)(30 200)(31 88)(32 202)(33 90)(34 204)(35 92)(36 206)(37 94)(38 208)(39 96)(40 210)(41 98)(42 212)(43 100)(44 214)(45 102)(46 216)(47 104)(48 218)(49 106)(50 220)(51 108)(52 222)(53 110)(54 224)(55 112)(56 198)(58 140)(60 114)(62 116)(64 118)(66 120)(68 122)(70 124)(72 126)(74 128)(76 130)(78 132)(80 134)(82 136)(84 138)(85 171)(87 173)(89 175)(91 177)(93 179)(95 181)(97 183)(99 185)(101 187)(103 189)(105 191)(107 193)(109 195)(111 169)(113 142)(115 144)(117 146)(119 148)(121 150)(123 152)(125 154)(127 156)(129 158)(131 160)(133 162)(135 164)(137 166)(139 168)(170 197)(172 199)(174 201)(176 203)(178 205)(180 207)(182 209)(184 211)(186 213)(188 215)(190 217)(192 219)(194 221)(196 223)
(1 15)(2 16)(3 17)(4 18)(5 19)(6 20)(7 21)(8 22)(9 23)(10 24)(11 25)(12 26)(13 27)(14 28)(29 43)(30 44)(31 45)(32 46)(33 47)(34 48)(35 49)(36 50)(37 51)(38 52)(39 53)(40 54)(41 55)(42 56)(57 71)(58 72)(59 73)(60 74)(61 75)(62 76)(63 77)(64 78)(65 79)(66 80)(67 81)(68 82)(69 83)(70 84)(85 99)(86 100)(87 101)(88 102)(89 103)(90 104)(91 105)(92 106)(93 107)(94 108)(95 109)(96 110)(97 111)(98 112)(113 127)(114 128)(115 129)(116 130)(117 131)(118 132)(119 133)(120 134)(121 135)(122 136)(123 137)(124 138)(125 139)(126 140)(141 155)(142 156)(143 157)(144 158)(145 159)(146 160)(147 161)(148 162)(149 163)(150 164)(151 165)(152 166)(153 167)(154 168)(169 183)(170 184)(171 185)(172 186)(173 187)(174 188)(175 189)(176 190)(177 191)(178 192)(179 193)(180 194)(181 195)(182 196)(197 211)(198 212)(199 213)(200 214)(201 215)(202 216)(203 217)(204 218)(205 219)(206 220)(207 221)(208 222)(209 223)(210 224)
(1 119)(2 120)(3 121)(4 122)(5 123)(6 124)(7 125)(8 126)(9 127)(10 128)(11 129)(12 130)(13 131)(14 132)(15 133)(16 134)(17 135)(18 136)(19 137)(20 138)(21 139)(22 140)(23 113)(24 114)(25 115)(26 116)(27 117)(28 118)(29 172)(30 173)(31 174)(32 175)(33 176)(34 177)(35 178)(36 179)(37 180)(38 181)(39 182)(40 183)(41 184)(42 185)(43 186)(44 187)(45 188)(46 189)(47 190)(48 191)(49 192)(50 193)(51 194)(52 195)(53 196)(54 169)(55 170)(56 171)(57 168)(58 141)(59 142)(60 143)(61 144)(62 145)(63 146)(64 147)(65 148)(66 149)(67 150)(68 151)(69 152)(70 153)(71 154)(72 155)(73 156)(74 157)(75 158)(76 159)(77 160)(78 161)(79 162)(80 163)(81 164)(82 165)(83 166)(84 167)(85 198)(86 199)(87 200)(88 201)(89 202)(90 203)(91 204)(92 205)(93 206)(94 207)(95 208)(96 209)(97 210)(98 211)(99 212)(100 213)(101 214)(102 215)(103 216)(104 217)(105 218)(106 219)(107 220)(108 221)(109 222)(110 223)(111 224)(112 197)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168)(169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196)(197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224)
(1 112 133 211)(2 97 134 224)(3 110 135 209)(4 95 136 222)(5 108 137 207)(6 93 138 220)(7 106 139 205)(8 91 140 218)(9 104 113 203)(10 89 114 216)(11 102 115 201)(12 87 116 214)(13 100 117 199)(14 85 118 212)(15 98 119 197)(16 111 120 210)(17 96 121 223)(18 109 122 208)(19 94 123 221)(20 107 124 206)(21 92 125 219)(22 105 126 204)(23 90 127 217)(24 103 128 202)(25 88 129 215)(26 101 130 200)(27 86 131 213)(28 99 132 198)(29 77 186 146)(30 62 187 159)(31 75 188 144)(32 60 189 157)(33 73 190 142)(34 58 191 155)(35 71 192 168)(36 84 193 153)(37 69 194 166)(38 82 195 151)(39 67 196 164)(40 80 169 149)(41 65 170 162)(42 78 171 147)(43 63 172 160)(44 76 173 145)(45 61 174 158)(46 74 175 143)(47 59 176 156)(48 72 177 141)(49 57 178 154)(50 70 179 167)(51 83 180 152)(52 68 181 165)(53 81 182 150)(54 66 183 163)(55 79 184 148)(56 64 185 161)
G:=sub<Sym(224)| (1,148)(2,149)(3,150)(4,151)(5,152)(6,153)(7,154)(8,155)(9,156)(10,157)(11,158)(12,159)(13,160)(14,161)(15,162)(16,163)(17,164)(18,165)(19,166)(20,167)(21,168)(22,141)(23,142)(24,143)(25,144)(26,145)(27,146)(28,147)(29,86)(30,87)(31,88)(32,89)(33,90)(34,91)(35,92)(36,93)(37,94)(38,95)(39,96)(40,97)(41,98)(42,99)(43,100)(44,101)(45,102)(46,103)(47,104)(48,105)(49,106)(50,107)(51,108)(52,109)(53,110)(54,111)(55,112)(56,85)(57,139)(58,140)(59,113)(60,114)(61,115)(62,116)(63,117)(64,118)(65,119)(66,120)(67,121)(68,122)(69,123)(70,124)(71,125)(72,126)(73,127)(74,128)(75,129)(76,130)(77,131)(78,132)(79,133)(80,134)(81,135)(82,136)(83,137)(84,138)(169,224)(170,197)(171,198)(172,199)(173,200)(174,201)(175,202)(176,203)(177,204)(178,205)(179,206)(180,207)(181,208)(182,209)(183,210)(184,211)(185,212)(186,213)(187,214)(188,215)(189,216)(190,217)(191,218)(192,219)(193,220)(194,221)(195,222)(196,223), (1,65)(2,149)(3,67)(4,151)(5,69)(6,153)(7,71)(8,155)(9,73)(10,157)(11,75)(12,159)(13,77)(14,161)(15,79)(16,163)(17,81)(18,165)(19,83)(20,167)(21,57)(22,141)(23,59)(24,143)(25,61)(26,145)(27,63)(28,147)(29,86)(30,200)(31,88)(32,202)(33,90)(34,204)(35,92)(36,206)(37,94)(38,208)(39,96)(40,210)(41,98)(42,212)(43,100)(44,214)(45,102)(46,216)(47,104)(48,218)(49,106)(50,220)(51,108)(52,222)(53,110)(54,224)(55,112)(56,198)(58,140)(60,114)(62,116)(64,118)(66,120)(68,122)(70,124)(72,126)(74,128)(76,130)(78,132)(80,134)(82,136)(84,138)(85,171)(87,173)(89,175)(91,177)(93,179)(95,181)(97,183)(99,185)(101,187)(103,189)(105,191)(107,193)(109,195)(111,169)(113,142)(115,144)(117,146)(119,148)(121,150)(123,152)(125,154)(127,156)(129,158)(131,160)(133,162)(135,164)(137,166)(139,168)(170,197)(172,199)(174,201)(176,203)(178,205)(180,207)(182,209)(184,211)(186,213)(188,215)(190,217)(192,219)(194,221)(196,223), (1,15)(2,16)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,23)(10,24)(11,25)(12,26)(13,27)(14,28)(29,43)(30,44)(31,45)(32,46)(33,47)(34,48)(35,49)(36,50)(37,51)(38,52)(39,53)(40,54)(41,55)(42,56)(57,71)(58,72)(59,73)(60,74)(61,75)(62,76)(63,77)(64,78)(65,79)(66,80)(67,81)(68,82)(69,83)(70,84)(85,99)(86,100)(87,101)(88,102)(89,103)(90,104)(91,105)(92,106)(93,107)(94,108)(95,109)(96,110)(97,111)(98,112)(113,127)(114,128)(115,129)(116,130)(117,131)(118,132)(119,133)(120,134)(121,135)(122,136)(123,137)(124,138)(125,139)(126,140)(141,155)(142,156)(143,157)(144,158)(145,159)(146,160)(147,161)(148,162)(149,163)(150,164)(151,165)(152,166)(153,167)(154,168)(169,183)(170,184)(171,185)(172,186)(173,187)(174,188)(175,189)(176,190)(177,191)(178,192)(179,193)(180,194)(181,195)(182,196)(197,211)(198,212)(199,213)(200,214)(201,215)(202,216)(203,217)(204,218)(205,219)(206,220)(207,221)(208,222)(209,223)(210,224), (1,119)(2,120)(3,121)(4,122)(5,123)(6,124)(7,125)(8,126)(9,127)(10,128)(11,129)(12,130)(13,131)(14,132)(15,133)(16,134)(17,135)(18,136)(19,137)(20,138)(21,139)(22,140)(23,113)(24,114)(25,115)(26,116)(27,117)(28,118)(29,172)(30,173)(31,174)(32,175)(33,176)(34,177)(35,178)(36,179)(37,180)(38,181)(39,182)(40,183)(41,184)(42,185)(43,186)(44,187)(45,188)(46,189)(47,190)(48,191)(49,192)(50,193)(51,194)(52,195)(53,196)(54,169)(55,170)(56,171)(57,168)(58,141)(59,142)(60,143)(61,144)(62,145)(63,146)(64,147)(65,148)(66,149)(67,150)(68,151)(69,152)(70,153)(71,154)(72,155)(73,156)(74,157)(75,158)(76,159)(77,160)(78,161)(79,162)(80,163)(81,164)(82,165)(83,166)(84,167)(85,198)(86,199)(87,200)(88,201)(89,202)(90,203)(91,204)(92,205)(93,206)(94,207)(95,208)(96,209)(97,210)(98,211)(99,212)(100,213)(101,214)(102,215)(103,216)(104,217)(105,218)(106,219)(107,220)(108,221)(109,222)(110,223)(111,224)(112,197), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196)(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,112,133,211)(2,97,134,224)(3,110,135,209)(4,95,136,222)(5,108,137,207)(6,93,138,220)(7,106,139,205)(8,91,140,218)(9,104,113,203)(10,89,114,216)(11,102,115,201)(12,87,116,214)(13,100,117,199)(14,85,118,212)(15,98,119,197)(16,111,120,210)(17,96,121,223)(18,109,122,208)(19,94,123,221)(20,107,124,206)(21,92,125,219)(22,105,126,204)(23,90,127,217)(24,103,128,202)(25,88,129,215)(26,101,130,200)(27,86,131,213)(28,99,132,198)(29,77,186,146)(30,62,187,159)(31,75,188,144)(32,60,189,157)(33,73,190,142)(34,58,191,155)(35,71,192,168)(36,84,193,153)(37,69,194,166)(38,82,195,151)(39,67,196,164)(40,80,169,149)(41,65,170,162)(42,78,171,147)(43,63,172,160)(44,76,173,145)(45,61,174,158)(46,74,175,143)(47,59,176,156)(48,72,177,141)(49,57,178,154)(50,70,179,167)(51,83,180,152)(52,68,181,165)(53,81,182,150)(54,66,183,163)(55,79,184,148)(56,64,185,161)>;
G:=Group( (1,148)(2,149)(3,150)(4,151)(5,152)(6,153)(7,154)(8,155)(9,156)(10,157)(11,158)(12,159)(13,160)(14,161)(15,162)(16,163)(17,164)(18,165)(19,166)(20,167)(21,168)(22,141)(23,142)(24,143)(25,144)(26,145)(27,146)(28,147)(29,86)(30,87)(31,88)(32,89)(33,90)(34,91)(35,92)(36,93)(37,94)(38,95)(39,96)(40,97)(41,98)(42,99)(43,100)(44,101)(45,102)(46,103)(47,104)(48,105)(49,106)(50,107)(51,108)(52,109)(53,110)(54,111)(55,112)(56,85)(57,139)(58,140)(59,113)(60,114)(61,115)(62,116)(63,117)(64,118)(65,119)(66,120)(67,121)(68,122)(69,123)(70,124)(71,125)(72,126)(73,127)(74,128)(75,129)(76,130)(77,131)(78,132)(79,133)(80,134)(81,135)(82,136)(83,137)(84,138)(169,224)(170,197)(171,198)(172,199)(173,200)(174,201)(175,202)(176,203)(177,204)(178,205)(179,206)(180,207)(181,208)(182,209)(183,210)(184,211)(185,212)(186,213)(187,214)(188,215)(189,216)(190,217)(191,218)(192,219)(193,220)(194,221)(195,222)(196,223), (1,65)(2,149)(3,67)(4,151)(5,69)(6,153)(7,71)(8,155)(9,73)(10,157)(11,75)(12,159)(13,77)(14,161)(15,79)(16,163)(17,81)(18,165)(19,83)(20,167)(21,57)(22,141)(23,59)(24,143)(25,61)(26,145)(27,63)(28,147)(29,86)(30,200)(31,88)(32,202)(33,90)(34,204)(35,92)(36,206)(37,94)(38,208)(39,96)(40,210)(41,98)(42,212)(43,100)(44,214)(45,102)(46,216)(47,104)(48,218)(49,106)(50,220)(51,108)(52,222)(53,110)(54,224)(55,112)(56,198)(58,140)(60,114)(62,116)(64,118)(66,120)(68,122)(70,124)(72,126)(74,128)(76,130)(78,132)(80,134)(82,136)(84,138)(85,171)(87,173)(89,175)(91,177)(93,179)(95,181)(97,183)(99,185)(101,187)(103,189)(105,191)(107,193)(109,195)(111,169)(113,142)(115,144)(117,146)(119,148)(121,150)(123,152)(125,154)(127,156)(129,158)(131,160)(133,162)(135,164)(137,166)(139,168)(170,197)(172,199)(174,201)(176,203)(178,205)(180,207)(182,209)(184,211)(186,213)(188,215)(190,217)(192,219)(194,221)(196,223), (1,15)(2,16)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,23)(10,24)(11,25)(12,26)(13,27)(14,28)(29,43)(30,44)(31,45)(32,46)(33,47)(34,48)(35,49)(36,50)(37,51)(38,52)(39,53)(40,54)(41,55)(42,56)(57,71)(58,72)(59,73)(60,74)(61,75)(62,76)(63,77)(64,78)(65,79)(66,80)(67,81)(68,82)(69,83)(70,84)(85,99)(86,100)(87,101)(88,102)(89,103)(90,104)(91,105)(92,106)(93,107)(94,108)(95,109)(96,110)(97,111)(98,112)(113,127)(114,128)(115,129)(116,130)(117,131)(118,132)(119,133)(120,134)(121,135)(122,136)(123,137)(124,138)(125,139)(126,140)(141,155)(142,156)(143,157)(144,158)(145,159)(146,160)(147,161)(148,162)(149,163)(150,164)(151,165)(152,166)(153,167)(154,168)(169,183)(170,184)(171,185)(172,186)(173,187)(174,188)(175,189)(176,190)(177,191)(178,192)(179,193)(180,194)(181,195)(182,196)(197,211)(198,212)(199,213)(200,214)(201,215)(202,216)(203,217)(204,218)(205,219)(206,220)(207,221)(208,222)(209,223)(210,224), (1,119)(2,120)(3,121)(4,122)(5,123)(6,124)(7,125)(8,126)(9,127)(10,128)(11,129)(12,130)(13,131)(14,132)(15,133)(16,134)(17,135)(18,136)(19,137)(20,138)(21,139)(22,140)(23,113)(24,114)(25,115)(26,116)(27,117)(28,118)(29,172)(30,173)(31,174)(32,175)(33,176)(34,177)(35,178)(36,179)(37,180)(38,181)(39,182)(40,183)(41,184)(42,185)(43,186)(44,187)(45,188)(46,189)(47,190)(48,191)(49,192)(50,193)(51,194)(52,195)(53,196)(54,169)(55,170)(56,171)(57,168)(58,141)(59,142)(60,143)(61,144)(62,145)(63,146)(64,147)(65,148)(66,149)(67,150)(68,151)(69,152)(70,153)(71,154)(72,155)(73,156)(74,157)(75,158)(76,159)(77,160)(78,161)(79,162)(80,163)(81,164)(82,165)(83,166)(84,167)(85,198)(86,199)(87,200)(88,201)(89,202)(90,203)(91,204)(92,205)(93,206)(94,207)(95,208)(96,209)(97,210)(98,211)(99,212)(100,213)(101,214)(102,215)(103,216)(104,217)(105,218)(106,219)(107,220)(108,221)(109,222)(110,223)(111,224)(112,197), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196)(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,112,133,211)(2,97,134,224)(3,110,135,209)(4,95,136,222)(5,108,137,207)(6,93,138,220)(7,106,139,205)(8,91,140,218)(9,104,113,203)(10,89,114,216)(11,102,115,201)(12,87,116,214)(13,100,117,199)(14,85,118,212)(15,98,119,197)(16,111,120,210)(17,96,121,223)(18,109,122,208)(19,94,123,221)(20,107,124,206)(21,92,125,219)(22,105,126,204)(23,90,127,217)(24,103,128,202)(25,88,129,215)(26,101,130,200)(27,86,131,213)(28,99,132,198)(29,77,186,146)(30,62,187,159)(31,75,188,144)(32,60,189,157)(33,73,190,142)(34,58,191,155)(35,71,192,168)(36,84,193,153)(37,69,194,166)(38,82,195,151)(39,67,196,164)(40,80,169,149)(41,65,170,162)(42,78,171,147)(43,63,172,160)(44,76,173,145)(45,61,174,158)(46,74,175,143)(47,59,176,156)(48,72,177,141)(49,57,178,154)(50,70,179,167)(51,83,180,152)(52,68,181,165)(53,81,182,150)(54,66,183,163)(55,79,184,148)(56,64,185,161) );
G=PermutationGroup([[(1,148),(2,149),(3,150),(4,151),(5,152),(6,153),(7,154),(8,155),(9,156),(10,157),(11,158),(12,159),(13,160),(14,161),(15,162),(16,163),(17,164),(18,165),(19,166),(20,167),(21,168),(22,141),(23,142),(24,143),(25,144),(26,145),(27,146),(28,147),(29,86),(30,87),(31,88),(32,89),(33,90),(34,91),(35,92),(36,93),(37,94),(38,95),(39,96),(40,97),(41,98),(42,99),(43,100),(44,101),(45,102),(46,103),(47,104),(48,105),(49,106),(50,107),(51,108),(52,109),(53,110),(54,111),(55,112),(56,85),(57,139),(58,140),(59,113),(60,114),(61,115),(62,116),(63,117),(64,118),(65,119),(66,120),(67,121),(68,122),(69,123),(70,124),(71,125),(72,126),(73,127),(74,128),(75,129),(76,130),(77,131),(78,132),(79,133),(80,134),(81,135),(82,136),(83,137),(84,138),(169,224),(170,197),(171,198),(172,199),(173,200),(174,201),(175,202),(176,203),(177,204),(178,205),(179,206),(180,207),(181,208),(182,209),(183,210),(184,211),(185,212),(186,213),(187,214),(188,215),(189,216),(190,217),(191,218),(192,219),(193,220),(194,221),(195,222),(196,223)], [(1,65),(2,149),(3,67),(4,151),(5,69),(6,153),(7,71),(8,155),(9,73),(10,157),(11,75),(12,159),(13,77),(14,161),(15,79),(16,163),(17,81),(18,165),(19,83),(20,167),(21,57),(22,141),(23,59),(24,143),(25,61),(26,145),(27,63),(28,147),(29,86),(30,200),(31,88),(32,202),(33,90),(34,204),(35,92),(36,206),(37,94),(38,208),(39,96),(40,210),(41,98),(42,212),(43,100),(44,214),(45,102),(46,216),(47,104),(48,218),(49,106),(50,220),(51,108),(52,222),(53,110),(54,224),(55,112),(56,198),(58,140),(60,114),(62,116),(64,118),(66,120),(68,122),(70,124),(72,126),(74,128),(76,130),(78,132),(80,134),(82,136),(84,138),(85,171),(87,173),(89,175),(91,177),(93,179),(95,181),(97,183),(99,185),(101,187),(103,189),(105,191),(107,193),(109,195),(111,169),(113,142),(115,144),(117,146),(119,148),(121,150),(123,152),(125,154),(127,156),(129,158),(131,160),(133,162),(135,164),(137,166),(139,168),(170,197),(172,199),(174,201),(176,203),(178,205),(180,207),(182,209),(184,211),(186,213),(188,215),(190,217),(192,219),(194,221),(196,223)], [(1,15),(2,16),(3,17),(4,18),(5,19),(6,20),(7,21),(8,22),(9,23),(10,24),(11,25),(12,26),(13,27),(14,28),(29,43),(30,44),(31,45),(32,46),(33,47),(34,48),(35,49),(36,50),(37,51),(38,52),(39,53),(40,54),(41,55),(42,56),(57,71),(58,72),(59,73),(60,74),(61,75),(62,76),(63,77),(64,78),(65,79),(66,80),(67,81),(68,82),(69,83),(70,84),(85,99),(86,100),(87,101),(88,102),(89,103),(90,104),(91,105),(92,106),(93,107),(94,108),(95,109),(96,110),(97,111),(98,112),(113,127),(114,128),(115,129),(116,130),(117,131),(118,132),(119,133),(120,134),(121,135),(122,136),(123,137),(124,138),(125,139),(126,140),(141,155),(142,156),(143,157),(144,158),(145,159),(146,160),(147,161),(148,162),(149,163),(150,164),(151,165),(152,166),(153,167),(154,168),(169,183),(170,184),(171,185),(172,186),(173,187),(174,188),(175,189),(176,190),(177,191),(178,192),(179,193),(180,194),(181,195),(182,196),(197,211),(198,212),(199,213),(200,214),(201,215),(202,216),(203,217),(204,218),(205,219),(206,220),(207,221),(208,222),(209,223),(210,224)], [(1,119),(2,120),(3,121),(4,122),(5,123),(6,124),(7,125),(8,126),(9,127),(10,128),(11,129),(12,130),(13,131),(14,132),(15,133),(16,134),(17,135),(18,136),(19,137),(20,138),(21,139),(22,140),(23,113),(24,114),(25,115),(26,116),(27,117),(28,118),(29,172),(30,173),(31,174),(32,175),(33,176),(34,177),(35,178),(36,179),(37,180),(38,181),(39,182),(40,183),(41,184),(42,185),(43,186),(44,187),(45,188),(46,189),(47,190),(48,191),(49,192),(50,193),(51,194),(52,195),(53,196),(54,169),(55,170),(56,171),(57,168),(58,141),(59,142),(60,143),(61,144),(62,145),(63,146),(64,147),(65,148),(66,149),(67,150),(68,151),(69,152),(70,153),(71,154),(72,155),(73,156),(74,157),(75,158),(76,159),(77,160),(78,161),(79,162),(80,163),(81,164),(82,165),(83,166),(84,167),(85,198),(86,199),(87,200),(88,201),(89,202),(90,203),(91,204),(92,205),(93,206),(94,207),(95,208),(96,209),(97,210),(98,211),(99,212),(100,213),(101,214),(102,215),(103,216),(104,217),(105,218),(106,219),(107,220),(108,221),(109,222),(110,223),(111,224),(112,197)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168),(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196),(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224)], [(1,112,133,211),(2,97,134,224),(3,110,135,209),(4,95,136,222),(5,108,137,207),(6,93,138,220),(7,106,139,205),(8,91,140,218),(9,104,113,203),(10,89,114,216),(11,102,115,201),(12,87,116,214),(13,100,117,199),(14,85,118,212),(15,98,119,197),(16,111,120,210),(17,96,121,223),(18,109,122,208),(19,94,123,221),(20,107,124,206),(21,92,125,219),(22,105,126,204),(23,90,127,217),(24,103,128,202),(25,88,129,215),(26,101,130,200),(27,86,131,213),(28,99,132,198),(29,77,186,146),(30,62,187,159),(31,75,188,144),(32,60,189,157),(33,73,190,142),(34,58,191,155),(35,71,192,168),(36,84,193,153),(37,69,194,166),(38,82,195,151),(39,67,196,164),(40,80,169,149),(41,65,170,162),(42,78,171,147),(43,63,172,160),(44,76,173,145),(45,61,174,158),(46,74,175,143),(47,59,176,156),(48,72,177,141),(49,57,178,154),(50,70,179,167),(51,83,180,152),(52,68,181,165),(53,81,182,150),(54,66,183,163),(55,79,184,148),(56,64,185,161)]])
100 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 2K | 4A | ··· | 4H | 4I | ··· | 4P | 4Q | ··· | 4AB | 7A | 7B | 7C | 14A | ··· | 14U | 14V | ··· | 14AG | 28A | ··· | 28X |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | ··· | 4 | 4 | ··· | 4 | 7 | 7 | 7 | 14 | ··· | 14 | 14 | ··· | 14 | 28 | ··· | 28 |
size | 1 | 1 | ··· | 1 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 7 | ··· | 7 | 14 | ··· | 14 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
100 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | - | |||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C4 | D7 | C4○D4 | D14 | D14 | D14 | C4×D7 | D4⋊2D7 |
kernel | C2×C23.11D14 | C23.11D14 | C2×C4×Dic7 | C2×Dic7⋊C4 | C2×C23.D7 | C14×C22⋊C4 | C23×Dic7 | C22×Dic7 | C2×C22⋊C4 | C2×C14 | C22⋊C4 | C22×C4 | C24 | C23 | C22 |
# reps | 1 | 8 | 2 | 2 | 1 | 1 | 1 | 16 | 3 | 8 | 12 | 6 | 3 | 24 | 12 |
Matrix representation of C2×C23.11D14 ►in GL5(𝔽29)
28 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 28 | 0 |
0 | 0 | 0 | 0 | 28 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 24 | 28 |
28 | 0 | 0 | 0 | 0 |
0 | 28 | 0 | 0 | 0 |
0 | 0 | 28 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 28 | 0 |
0 | 0 | 0 | 0 | 28 |
17 | 0 | 0 | 0 | 0 |
0 | 26 | 4 | 0 | 0 |
0 | 25 | 25 | 0 | 0 |
0 | 0 | 0 | 12 | 28 |
0 | 0 | 0 | 27 | 17 |
12 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 |
0 | 26 | 17 | 0 | 0 |
0 | 0 | 0 | 1 | 12 |
0 | 0 | 0 | 24 | 28 |
G:=sub<GL(5,GF(29))| [28,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,28,0,0,0,0,0,28],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,24,0,0,0,0,28],[28,0,0,0,0,0,28,0,0,0,0,0,28,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,28,0,0,0,0,0,28],[17,0,0,0,0,0,26,25,0,0,0,4,25,0,0,0,0,0,12,27,0,0,0,28,17],[12,0,0,0,0,0,12,26,0,0,0,0,17,0,0,0,0,0,1,24,0,0,0,12,28] >;
C2×C23.11D14 in GAP, Magma, Sage, TeX
C_2\times C_2^3._{11}D_{14}
% in TeX
G:=Group("C2xC2^3.11D14");
// GroupNames label
G:=SmallGroup(448,933);
// by ID
G=gap.SmallGroup(448,933);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,224,297,80,18822]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=1,e^14=c,f^2=d*c=c*d,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,e*b*e^-1=f*b*f^-1=b*d=d*b,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=e^13>;
// generators/relations